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The motion of solids in inviscid uniform
vortical fields
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We consider the general motion (translation and rotation) of a deformable or
rigid body of arbitrary shape in a linear shear flow of an effectively inviscid and
incompressible fluid possessing uniform vorticity. The ambient vorticity may be time-
dependent. For two-dimensional configurations a solution with uniform vorticity is
possible for all times and for three-dimensional, it is possible only initially or during
a short time interval after the body is impulsively introduced into the fluid. General
analytic expressions for the vortical force and moment exerted on an arbitrary
moving body are presented. Bearing in mind applications for large non-spherical
bubble dynamics, the general expressions for the hydrodynamic loads are further
reduced for symmetric quadratic shapes such as two-dimensional ellipses or three-
dimensional ellipsoids. The simplified expressions are given in terms of the body’s
added-mass tensor, its six velocities and the ambient vorticity. The few available
degenerate solutions for cylinders and spheres are readily obtained as limiting cases.

1. Introduction
A fundamental problem in fluid mechanics, especially in multiphase flows, is to

determine the equations of motion and consequently the trajectories of a rigid or
deformable body moving in an ambient vortical flow field. It is a common practice
in bubble dynamics when the bubble surface is assumed to be clean, to apply a
zero-shear boundary condition on its surface when the Reynolds number is relatively
high. Thus, by allowing slip and ignoring the effect of boundary-layer vorticity for
streamlined shapes, the problem can be treated within the framework of inviscid flow
theory. According to Lamb (1932, p. 233), determining the pressure loads exerted
on a moving body in an inviscid fluid endowed with vorticity is a problem of
considerable interest, but unfortunately not very tractable. The only exception being
a two-dimensional case and uniform vorticity. It is often postulated that the ambient
vorticity is weak and uniform at infinity. However, even under these assumptions, the
only three-dimensional solution available is that for the force acting on a rigid sphere
embedded in a simple shear flow (e.g. Auton 1987). Auton’s solution, which is based
on Lighthill’s (1956) idea of using a Lagrangian drift function, is involved and is
limited to perfectly symmetric spherical geometries. No solutions have been reported
so far for non-spherical shapes, even though some conjectures (as yet unproved) are
also made for special axisymmetric bodies. The general impression from reviewing the
literature, is that the problem is still far from being solved and that some confusion
even arises for the elementary spherical case, with regard to the proper use of the
frame-indifference objectivity principle. For this reason, Magnaudet & Eames (2000)
have stated in their comprehensive review (see p. 701), that formulating the equations
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of motion for a general shape moving with high Re in a non-uniform flow field, is
the first out of three open problems of particular importance in bubble motion. This
proposition serves as one of the prime motivations for the present study.

The problem of evaluating the pressure loads experienced by a body moving in an
inviscid flow field possessing uniform vorticity was first posed in the pioneering work
of Proudman (1916) following a suggestion of G. I. Taylor. It appears that even to
date a general solution to this fundamental problem is not available, in spite of the
considerable progress made for planar flows. Proudman noted the difference between
two- and three-dimensional cases. Namely, a two-dimensional motion with uniform
vorticity is possible for all times, but in three-dimensions such a motion is possible
only for a short time after introducing the body into the fluid because of vorticity
stretching effects. This point can be further explained by considering the Helmholtz
vorticity transport equation for inviscid incompressible flows,

Dω

Dt
= (ω · ∇)v, (1.1)

where v is the rotational velocity and ω = ∇ × v denotes the ambient vorticity. For
two-dimensional flows, ω ⊥ v and therefore Dω/Dt = 0, which implies that flows
with uniform vorticity are possible. However, in three-dimensional flows the right-
hand side of (1.1) is generally non-zero and thus flows with uniform vorticity are
possible only initially, or during a short time interval, before vortex stretching effects
become dominant.

Two simple cases of effectively inviscid flows with uniform vorticity are discussed in
some detail by Batchelor (1967, pp. 538–543). The first considers a body moving in an
infinite expanse of fluid which is in rigid rotation at infinity (rotating machinery) and
recalling that a rotation with an angular velocity 1

2
ω, generates a uniform vorticity ω.

The second case is that of a body embedded in a fluid in simple shearing motion at
infinity, where the ambient velocity varies linearly with the spatial coordinates. It can
be shown that the second case of a simple shear, can be obtained as a combination
of the first case of rigid-body rotation and an irrotational straining flow. Here, we
consider the general case of two-dimensional or three-dimensional deformable shapes
moving with six degrees of freedom, i.e. translation velocity U and angular rotation
Ω . Analytic expressions are derived for the force and moment acting on the body in
terms of its six velocities, the ambient stream V and vorticity ω0, as well as the body’s
added-mass tensor.

So far, the only two configurations which have been considered in the literature,
are those which preserve perfect symmetry, i.e. a cylinder and a sphere. For these
shapes, Auton, Hunt & Prud’homme (1988, equation (2.13)) proposed the following
expression for the force exerted on the body,

F = B

{
(1 + CM )

DV

Dt
+ CLω0 × (U − V) − CM

dU

dt

}
, (1.2)

where the fluid density is taken as unity, B is the body volume and CM is its added-
mass (see also Magnaudet & Eames 2000, equation (11)). The lift coefficient CL is
decomposed as follows:

CL(t) = 1
2
(1 + CM ) + CLω(t), (1.3)

where CLω is the so-called ‘rotational’ lift coefficient. This coefficient is generally
time-dependent. Legendre & Magnaudet (1998) have shown that the ‘initial’ value
for a sphere is CLω(0) = 0 and Auton (1987) has demonstrated that CLω(∞) = − 1

4
,
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under the assumption of weak vorticity. The variation of CL with t between these
two extreme values is depicted in figure 20 of Legendre & Magnaudet (1998). For
cylinders, CLω = 1 and thus CL = 2 for all times, as shown for example in Batchelor
(1967, p. 542). It is also shown there that in the case of rigid fluid rotation about a
circular cylinder, CL = 1.

It should be emphasized that (1.2) is valid only for cylinders/spheres, which are
perfectly symmetric shapes and where the angular velocity Ω does not play a role
as long as the fluid is inviscid. An extension for non-spherical shapes is far from
being straightforward even for non-rotating shapes, i.e. Ω = 0. For non-spherical
streamlined shapes, the torque acting on the body should be considered also, since
together with the force, it determines the equations of motion of the body from
which its spatial trajectory can be found. The only previous attempts to generalize the
analysis for arbitrary (i.e. non perfectly-symmetric) configurations is Batchelor’s (1967,
equation (7.4.16)) for two-dimensional cylinders and Miloh’s (1994) three-dimensional
generalization. It will be demonstrated in the following that these solutions for the
vortical force are incomplete. In addition, they do not consider the vortical moment
which is an important input parameter in bubble dynamics (e.g. Feng & Leal 1997;
Magnaudet & Eames 2000), especially for non-spherical (spheroidal) large bubbles.
These issues are further addressed in this work.

The structure of the paper is as follows. In § 2, we consider the general case of a
deformable shape moving with six degrees of freedom in an arbitrary linear shear
flow with a uniform ambient vorticity ω0(t). The induced velocity field is decomposed
into ‘rotational’ and ‘irrotational’ components and the corresponding Euler equations
are derived subject to the proper boundary conditions imposed on the body surface S.
The total force and moment acting on the moving body are then split into ‘potential’
and ‘vortical’ parts, where the latter is again decomposed into linear and quadratic
terms in the ambient vorticity ω0. Analytic expressions for the ‘vortical’ force and
moment are presented in § 3 for arbitrary two-dimensional and three-dimensional
shapes. It is then demonstrated in § 4 that these hydrodynamic loads can be greatly
simplified for quadratic shapes, which preserve the sign symmetry S(X) = S(−X), such
as two-dimensional (cylinders, ellipses, etc.) and three-dimensional (spheres, spheroids,
ellipsoids, etc.). First, we provide the corresponding analytic expressions for both the
force Fω and moment Mω, in the case where the flow at infinity is in rigid-body
rotation. Then, we consider the case of a simple shear flow with uniform vorticity
and derive the appropriate expressions for the ‘shear’ force and torque. The new
relationships are written in terms of the body’s added-mass tensor, its six velocities
and the ambient uniform vorticity. They provide a unified methodology for treating
both two-dimensional and three-dimensional shapes, as well as cases involving rigid
rotation and simple shearing motion. The two existing solutions for cylinders and
spheres, are readily obtained from the general solution as limiting trivial cases.

2. General formulation
We consider an inviscid and incompressible three-dimensional flow field with a

uniform time-dependent vorticity ω0(t) which is governed by the Euler equation. The
ambient velocity field is taken as a linear shear V + Ar, where V(t) is a constant
stream, A(t) is a second-rank tensor with zero trace and r (x1, x2, x3) is a radius vector
measured with respect to an arbitrary origin. It can be shown that

V(t) + A(t)r = V(t) + 1
2
ω0(t) × r + E(t)r, (2.1)
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where

Eij (t) = 1
2
(Aij (t) + Aji(t)), tr(E(t)) = 0 (2.2)

is a symmetric tensor and

ω0i(t) = −εijkAjk(t). (2.3)

The indices i, j and k are either 1, 2 or 3 and εijk is the permutation tensor. The
vorticity evolves with time according to the Helmholtz equation, i.e.

dω0

dt
= Eω0, (2.4)

which determines uniquely ω0(t) providing some initial conditions for the vorticity
are prescribed (see for example Majda & Bertozzi 2002, § 1).

Let us next assume that a moving body is instantaneously introduced into the fluid
such that the centre of mass of the homogeneous body coincides with the origin of
coordinates. In general, the body moves with six degrees of freedom, i.e. translation
U(t) of its centroid and angular velocity Ω(t) of its principal axes (see Figure 1).
Denoting the total induced velocity in the fluid by v and expressing the Euler equation
in a moving (with the body) coordinate system, we obtain (see Kochin, Kibel & Rose
1965, p. 53)

∂v

∂t
+ ∇

(
1
2
v · v − v · Uc

)
+ ω × (v − Uc) = −∇p, (2.5)

where for simplicity we choose the fluid density as unity. Here, ω = ∇ × v is the fluid
vorticity and Uc denotes the total velocity of a point on the body surface S, i.e.

Uc = U(t) + Ω(t) × r. (2.6)

In the following, we derive analytic expressions for both the hydrodynamic force F
and moment M acting on the moving body in a vortical stream in terms of the
dynamic pressure distribution p on the body surface, i.e.

F = −
∫

S

pn dS, M = −
∫

S

pr × n dS (2.7)

where n is the outward normal to S directed into the unbounded fluid.
In two-dimensional flows, dω/dt = 0 and thus it is possible to replace ω in

(2.5) by the uniform ambient vorticity ω0. On the other hand, for three-dimensional
configurations, the choice of ω = ω0 is valid only initially after the body is impulsively
introduced into the fluid, since, because of three-dimensional vortex stretching effects,
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dω/dt �= 0. It can be shown, however, that the approximation of ω ∼ ω0 in three-
dimensions, is still valid during a finite time interval satisfying t∗ < |ω0| / |(ω0 · ∇) v|,
which can be also estimated as t∗ < (|ω0| + (Vr/L))−1, where Vr is the module of the
body’s relative (to the fluid) velocity and L is its characteristic length scale. If the
ambient vorticity field is weak with respect to the corresponding inertia scale, then
we obtain t∗ < |∇2

2DΦ|−1. The linear operator ∇2
2D represents the two-dimensional

Laplacian in a plan orthogonal to the ambient vorticity vector. For genuine two-
dimensional flows, this operator is identically null and thus t∗ < ∞, implying that for
planar flows the theory is valid for all time. The two-dimensional Laplacian can be
considered also as an indication of three-dimensionality and the departure from the
planar case.

The velocity vector v in (2.5) must satisfy the body impermeable boundary condition,
i.e.

v · n|S = (Uc + Vd) · n|S, (2.8)

where Vd is the deformation velocity defined for a general deformable surface
S(r, t) = 0 as

Vd · n = −∂S/∂t

|∇S| . (2.9)

In order to satisfy the Neumann conditions of (2.8), let us express the fluid absolute
velocity as

v = v0 + vω,

v0 = V + Er + ∇Φ, vω = 1
2
ω0 × r − 1

2
ω0i∇ϕi+3 + vvort, (2.10)

where vvort is the response vortical velocity due to the presence of the body and
Φ is a harmonic function defined in terms of the six-Kirchhoff potentials, ϕi and
ϕi+3(i = 1, 2, 3), as (e.g. Lamb 1932, chap. 6).

Φ = (Ui − Vi)ϕi + Ωiϕi+3 + φE + φd, (2.11)

where

∂ϕi

∂n

∣∣∣∣
S

= ni,
∂ϕi+3

∂n

∣∣∣∣
S

= (r × n)i ,
∂φE

∂n

∣∣∣∣
S

= −Eijxinj ,

(2.12)
Vd ≡ ∇φd, vvort · n|S = 0.

It can then be easily verified that (2.10) and (2.11) indeed satisfy (2.8) by virtue of
(2.12). If the ambient flow is irrotational, i.e. ω0 = 0, then vω = 0 and the remaining
velocity term v0 can be expressed in terms of a velocity potential.

In a similar manner, it is possible to split the total pressure into a potential p0 and
vortical pω parts, i.e. p = p0 + pω, where by substituting (2.10) into (2.5), we obtain

∂v0

∂t
+ ∇

(
1
2
v0 · v0 − v0 · Uc

)
= −∇p0 (2.13)

and

∂vω

∂t
+ ∇

(
v0 · vω − Uc · vω + 1

2
vω · vω

)
+ ω0 × (v0 − Uc + vω) = −∇pω. (2.14)

The vortical pressure term can again be decomposed into terms which are linear and
quadratic in ω0 by letting pω = p(1)

ω + p(2)
ω where,

∂vω

∂t
+ ∇[vω · (v0 − Uc)] + ω0 × (v0 − Uc) = −∇p(1)

ω (2.15)
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and

∇
(

1
2
vω · vω

)
+ ω0 × vω = −∇p(2)

ω . (2.16)

Using these notations, the total hydrodynamic loads, (2.7), can be now written as,

F = F0 + F (1)
ω + F (2)

ω , M = M0 + M (1)
ω + M (2)

ω . (2.17)

The general (no restrictions imposed on the body’s shape) solution for the
irrotational contributions F0 and M0 for the ambient flow V+Er, are well known (see
Galper & Miloh 1994). For reasons of completeness, we reproduce and summarize
the Galper & Miloh results, which are also valid for an arbitrary weakly non-
uniform potential flow fields in Appendix A. In the next sections we determine the
six remaining vortical load components (Fω,Mω) and their dependence on the body’s
six velocities (U, Ω).

3. The vortical loads
In order to integrate the Euler equations, let us first rewrite (2.15), by using the

notations of (2.10), as

∂vω

∂t
+ ∇(vω · ∇Φ)+ω0 × ∇Φ − 1

2
ω0j ∇(∇ϕj+3 · vr )+ ∇

(
1
2
ω0 × r · vr

)
+ω0 × vr = −∇p(1)

ω ,

(3.1)
where

vr = V + Er − Uc (3.2)

represents the relative (to the body) velocity.
The acceleration term on the left-hand side of (3.1) is given by virtue of (2.10) as

∂vω

∂t
=

∂vvort

∂t
+ 1

2
ω̇0 × r − 1

2
ω̇oj ∇ϕj+3 − 1

2
ω0 × (ω0 × r) + 1

2
ω0 × ωoj ∇ϕj+3, (3.3)

where the overdot denotes differentiation with respect to time. It has been
demonstrated that during the initial stages (t = 0+), vvort = 0, but generally for three-
dimensional flows ∂vvort/∂t �= 0 since dω0/dt �= 0. Moreover, by examining the various
terms on the left-hand side of (3.1), we find that some of them (the first four terms)
are singular within the body and some (the last two terms) are regular. Thus, it is
possible again to split the linear pressure p(1)

ω term into singular and regular parts, i.e.

p(1)
ω = p

(1)
ωS + p(1)

ωr . (3.4)

In order to find the corresponding pressure force we adopt a methodology similar
to that originally proposed by Quartapelle & Napolitano (1982) (also see Howe 1995;
Chang & Lei 1996; Wells 1998; Noca, Shields & Jeon 1999), by multiplying ∇pωS

by ∇ϕi , integrate this product over the exterior (to the body) unbounded volume B+

and subtract the integration of ∇pωr over the interior body volume B−. Using this
procedure and by employing the Gauss theorem, we obtain the following expression
for the force:∫

B+

∇p
(1)
ωS · ∇ϕi dB −

∫
B−

∇p(1)
ωr dB = −

∫
S

(
p

(1)
ωS + p(1)

ωr

)
ni dS ≡ F (1)

ωi
. (3.5)

The contributions from the regular pressure terms can be found easily from (3.1)–
(3.3) by first verifying that∫

B−

[
1
2
ω̇0 ×r− 1

2
Ω × (ω0 ×r)+∇

(
1
2
ω0 ×r · vr

)
+ω0 ×vr

]
dB = 1

2
Bω0 × (V−U), (3.6)
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where B is the body’s volume, since our choice of coordinate system implies that∫
B−

xi dB = 0.
Before dealing with the singular pressure terms, note first that the vortical

acceleration term ∂vvort/∂t , does not contribute to the force. In order to prove this
claim, we substitute the first term in the right-hand side of (3.3) in the first integral
in (3.5), recall that ∇ · vvort = 0 and thus for a rigid body we obtain

−
∫

B+

∂vvort

∂t
· ∇ϕi dB = −

∫
B+

∇ ·
(

ϕi

∂vvort

∂t

)
dB =

∫
S

ϕi

∂vvort

∂t
· n dS = 0, (3.7)

since (see (2.12)) vvort · n|S = 0 for all t and vvort varies linearly with time for t = 0+

(compare with Legendre & Magnaudet (1998) equation (A 4) in the case of a sphere).
The remaining singular terms in (3.1) can be next integrated (see Appendix B).

Substituting these terms into (3.5) together with (3.6), we finally obtain the following
expression for the vortical force,

F (1)
ω = 1

2
Z ω̇0+

1
2
Ω ×Z ω0+

1
2
Bω0 ×(V−U)− 1

2
ω0 ×

∫
S

Φn dS +

∫
S

(ω0 ×∇Φ · n)ϕ dS,

(3.8)

where Z is the mixed added-mass tensor (see (A 1)) and ϕ ≡ (ϕ1, ϕ2, ϕ3). Thus, once
the velocity potential is known on S, i.e. Φ(S), we can easily determine the vortical
force acting on an arbitrary shape directly from (3.8). Further simplifications for
quadratic shapes are possible, as demonstrated in the following.

Using the same procedure, we can also readily obtain analytic expressions for
the vortical moment exerted on the body. By using the decomposition of the
hydrodynamic pressure into singular and regular parts, (3.4), it is possible to evaluate
the following volume integrals which determine the vortical torque, i.e.∫

B+

∇p
(1)
ωS · ∇ϕi+3 dB +

∫
B−

∇p(1)
ωr × r dB = −

∫
S

(
p

(1)
ωS +p(1)

ωr

)
(r×n)i dS ≡ M (1)

ωi
. (3.9)

Let us first evaluate the contribution of the regular pressure terms in (3.9), where
in an analogous manner to (3.6) and by using (3.2), we obtain∫

B−

∇p(1)
ωr × r dB = −

∫
B−

[
1
2
ω̇0 × r − 1

2
Ω × (ω0 × r)

+ ∇
(

1
2
ω0 × r · vr

)
+ ω0 × vr

]
× r dB. (3.10)

The various terms in the right-hand side of (3.10), can be computed easily and be
expressed in terms of the general moment of inertia tensor of the body.

The next step is to calculate the first integral in the left-hand side of (3.9) which
includes the singular pressure terms. The mathematical details can be found in
Appendix C and here we represent only the final result for the vortical torque
obtained from (3.9) and (3.10),

M (1)
ω = 1

2
R ω̇0 + 1

2
Ω × R ω0 +K − 1

2
ω0 ×

∫
S

Φr × n dS +

∫
S

(ω0 × ∇Φ · n)θ dS (3.11)

where θ ≡ (ϕ4, ϕ5, ϕ6) and K denotes the ‘regular’ torque given by the sum of (3.10)
and (C 5), i.e.

K = 1
2

∫
B−

{r × [(ω̇0 + Ω × ω0) × r + ω0 × Er ] + (ω0 × r ) × (Ω × r − Er )} dB.
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Further simplifications arise in two-dimensional flows where the angular velocity
Ω and vorticity ω0 vectors are colinear. These regular terms are represented by
integrating the product xixj over the interior body volume B− and thus can also be
written in terms of the body’s moment of inertia tensor. The similarity between (3.11)
and (3.8) is worth mentioning. The tensor R denotes the rotational added-mass tensor,
(A 1), and the first integral on the right-hand side of (3.11) can be also expressed in
terms of the added-mass tensors R and Z.

For completeness, we also provide here the corresponding quadratic vorticity load
terms. It is important to note that these quadratic terms have been ignored in previous
studies based on a priori assumption of ‘weak’ vorticity. It is emphasized again that
the present formulation is free of any ‘weak’ assumptions and thus quadratic terms
should be also included for the sake of consistency. These terms can be obtained
in a similar way by splitting the left-hand side of (2.10) into singular and regular
parts terms and performing the proper volume integration in (3.5) and (3.9) for ∇p(2)

ω ,
leading to

F (2)
ω = − 1

4
ω0 × Z ω0 − 1

2

∫
S

(ω0 × ω0j ∇ϕj+3 · n)ϕ dS (3.12)

and

M (2)
ω = − 1

4
ω0 ×Rω0 − 1

4

∫
B−

(ω0 · r )(ω0 ×r ) dB − 1
2

∫
S

(ω0 ×ω0j ∇ϕj+3 · n)θ dS (3.13)

since

[ω0 × (ω0 × r )] × r = (ω0 · r )(ω0 × r ). (3.14)

These quadratic in ω0 terms clearly vanish for perfectly symmetric two-dimensional
(cylinders) and three-dimensional (spheres) shapes (short-time) since both θ and r×n
are null on S. However, for non-symmetric shapes they render finite contributions
unless the ambient vorticity is ‘weak’ and these quadratic terms O(|ω0|2) are
asymptotically small with respect to the linear terms.

Before concluding this section, let us consider in particular the case of steady
two-dimensional flows with uniform (constant) ambient vorticity over rigid two-
dimensional contours. Thus, we can use a stream function formulation even without
imposing irrotationality. Under these conditions, the Euler equation, (2.5), renders
a first integral (Bernoulli equation). We denote the two-dimensional (in the (x1, x2)-
plane) velocity vector as

q ≡ v − Uc =

(
∂Ψ

∂x2

, −∂Ψ

∂x1

)
, (3.15)

where Ψ is the corresponding streamfunction (i.e. Ψ |s = 0). For a constant vorticity
field ω0, the last term in (2.5) can be written simply as

ω0 × q = ω0∇Ψ. (3.16)

It follows then that the pressure everywhere in the fluid is given by

p = − 1
2
q2 − ω0Ψ + const. (3.17)

It appears that this expression was first derived by Proudman (1916). It is important
to note, by virtue of the impermeability condition (2.8) applied on the rigid surface
S, that q · n|s = 0. Thus, the only (tangential) component of q on S is qt = ∂Ψ /∂n|s
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where the streamfunction is given by

Ψ = − 1
2

(
Ω − 1

2
ω0

)(
x2

1 + x2
2 − 2ψ4

)
+ (U − V) · (ψ1 − x2, ψ2 + x1)

− 1
2
E12

(
x2

1 − x2
2

)
+ ψE + const, (3.18)

where (ψi, ψE) are the corresponding stream functions for the potentials (ϕi, φE). The
constant in (3.18) is chosen so that Ψ |s = 0. Thus, the total steady two-dimensional
force and moment are simply given by

F = 1
2

∫
S

(
∂Ψ

∂n

)2

n dS, M = 1
2

∫
S

(
∂Ψ

∂n

)2

(r × n)dS, (3.19a, b)

where the streamfunction in (3.18) appears to be that for an irrotational flow with Ω

replaced by Ω − 1
2
ω0. This useful transformation was first reported by Miloh (1994).

For two-dimensional flows, it can also be shown that the last integral terms in (3.8)
and (3.11)–(3.13) can be expressed in terms of the corresponding streamfunction, i.e.∫

S

(ω0 × ∇Φ · n)ϕ dS =

∫
S

ω0

∂Ψ

∂n
ϕ dS =

∫
S

ω0Ψn dS, (3.20)

since Ψ is harmonic. The connection between the left-hand side of (3.20) and the
force contribution of the second term in the right-hand side of (3.17) for ω0 = const
is then obvious.

Summarizing, we have obtained general analytic expressions for calculating the
hydrodynamic force and moment acting on a body of arbitrary shape moving
unsteadily in a uniform ambient vortical flow field. The methodology is general
in the sense that it provides a unified approach for treating both two-dimensional
and three-dimensional cases. Some simplifications are possible for planar flows which
result from using a streamfunction formulation. The total loads are decomposed into
three terms in the manner described in (2.17). The ‘irrotational’ parts (F0,M0) are
given in Appendix A (see (A 6) and (A 9)) and the ‘vortical’ terms are given explicitly
by (3.8) and (3.11)–(3.13). It is important to note that these expressions are general in
the sense that no restrictions are imposed on the shape of the body, on its motion or
on the magnitude of the ambient vorticity. These analytic expressions can be further
reduced for quadratic shapes and written in terms of the various added-mass terms,
as demonstrated in the next section.

4. Simplifications for quadratic symmetric shapes
The expressions for the vorticity induced force and moment acting on a general

moving body can be further simplified for two-dimensional and three-dimensional
quadratic shapes, which preserve a sign symmetry S(X) = S(−X), such as circles,
ellipses, spheres, spheroids and ellipsoids. These configurations often appear in
numerous applications in fluid mechanics. A basic characteristic of quadratic shapes
is that the added mass tensor, (A 1), is a purely diagonal second-order tensor and
Z = Z T = 0. Also, in both rectilinear T and angular R tensors, the off-diagonal terms
are null. Another important property of such quadratic shapes is that the six Kirchhoff
potentials, which are uniquely defined by solving a corresponding Neumann problem,
can be expressed easily in terms of the added-mass tensor, i.e. (see for example Kochin
et al. 1965 § 7.8).

ϕi |s = − 1

B
Tijxj (i = 1, 2, 3), (4.1)
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where r (x1, x2, x3) denotes the radius vector of a point on S and B , as before,
represents the volume of the body. In addition, we have

ϕi+3|s = −Qiixjxk (no sum), (4.2)

where (i, j, k) are arranged in a cyclic order, such that i �= j �= k �= i. The diagonal
tensor Q is related to the angular added-mass R and the body’s inertia χ tensor by

Qii =
Rii

χjj − χkk

(no sum), χjk =

∫
B−

xjxk dB. (4.3a, b)

Clearly, the inertia tensor χjk is diagonal and if, let us say, χjj = χkk for some
two integers j �= k, then by definition the corresponding angular added-mass Rii is
zero, such as in the case of a three-dimensional axisymmetric body with respect to
the xi-axis. Recognizing the fact that ϕi depends linearly on xj and ϕi+3 depends
quadratically on the product xjxk , when evaluated on s, enables us to perform the
surface integration analytically and derive closed-form expressions for the vortical
loads in terms of the added-mass tensor.

Let us first consider the case of a rigid body moving with six degrees of freedom in
a uniform ambient vortical flow where the velocity field away from the body is given
by V + 1

2
ω0 × r (i.e. rigid-body rotation). No restrictions are imposed at this stage on

the orientations of either V or ω0. Since the ambient straining in this case is null (i.e.
E = 0) the total velocity potential can be written as (see (2.11)).

Φ = (Ui − Vi)ϕi + Ωiϕi+3. (4.4)

Substituting (4.1)–(4.4) into the last integral on the right-hand side of (3.8) yields∫
S

(ω0 × ∇Φ · n)ϕ dS =
T
B

[(ω0 × T (U − V)] . (4.5)

Note that there is no contribution from the angular term Ωiϕi+3 in (4.4) since, for
quadratic shapes, the integral

∫
S
xixjnk dS is identically zero for any combination of

(i, j, k).
Recalling that Z = 0 for quadratic shapes and that the third term on the right-hand

side of (3.8) can easily be expressed in terms of the rectilinear added-mass, we readily
obtain for the vortical force,

Fω = − 1
2
Bω0 × (U − V) +

(
I
2

+
T
B

)
[ω0 × T (U − V)], (4.6)

where I denotes the identity matrix. It is also noteworthy that for such symmetric
shapes the two surface integrals in (3.8) do not contain any contributions from φE and
thus (4.6) is independent of the ambient strain E. This special property is, however,
valid only for quadratic shapes. Again, it appears that there are no interaction terms
between the ambient vorticity ω0 and the angular velocity of the body Ω contributing
to the force in (4.6). Moreover, it is rather remarkable to see that because of the
quadratic form of ϕi+3 (see (4.2)), the right-hand side of (3.12) vanishes owing to
symmetry since Z = 0 and

∫
B−

xixj dB = 0 for i �= j . Thus, F (2)
ω = 0 and (4.6) in fact

yields the total vortical force acting on a general quadratic shape in the case where
the fluid far from the body is in rigid-body rotation (E = 0).

Two trivial cases can now be easily examined; the first is a circular cylinder where
the rectilinear added-mass coefficient is unity, i.e. T = Sδij (a 2 × 2 matrix) and the
cross-section area S replaces the body volume B . The vorticity vector ω0 is pointing
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out of the plane. Using these values in (4.6) gives

Fω = Sω0 × (U − V). (4.7)

Thus, the vortical force in this case is of a ‘lift’ nature with a lift coefficient CLω = 1
(compare also with (1.2)), which is in full agreement with Batchelor (1967 equation
(7.4.12)) as well as Auton et al. (1988) and Moreno-Inseretes, Ferriz-Mas & Schussker
(1994).

The second elementary case is that of a sphere, where T = 1
2
Bδij (a 3 × 3 matrix)

and (4.6) gives

Fω = 0. (4.8)

In other words, it is shown that unlike a cylinder, the lift coefficient for a sphere is
identically zero (CLω = 0). Thus, we are able to verify easily the numerical findings
given in (A 21) of Legendre & Magnaudet (1998). When comparing the lift coefficients
of a cylinder and a sphere, remember that the lift coefficient for a cylinder (as well
as for any two-dimensional contour) is valid for all time, whereas that for a sphere
is valid only during a small time interval before vortex stretching effects become
dominant.

In order to demonstrate the versatility of the present solution, let us consider yet
another example involving a two-dimensional elliptic cylinder with two major axes
a > b in rectilinear motion along its major axis. The corresponding two added masses
for an ellipse are T11 = πb2 and T22 = πa2 (e.g. Lamb 1932, p. 85) and thus (4.6)
yields

Fω = 1
2
S

(
1 +

b

a

)
ω0 × (U − V),

where S = πab, in agreement with the independent derivation based on pressure
integration given in Appendix D using elliptic coordinates.

Similar expressions can also be obtained for the vortical torque acting on a quadratic
body defined in (3.11), by making use of the special properties of the angular Kirchhoff
potentials ϕi+3 in (4.2). Thus, by omitting the tedious algebraic steps pertaining to
the evaluation of the last integral in the right-hand side of (3.11), the latter equation
can be simply written as

M (1)
ω = 1

2
R ω̇0 + 1

2
ω0 × Q Ω − Q (χω0 × Q Ω), (4.9)

which implies that the steady torque is generated only by interaction effects between
the ambient vorticity ω0 and the angular velocity of the body Ω . The first-order torque
is null for a non-rotating (translating) quadratic body. However, it can be shown that
there exists a finite second-order torque, (3.13), even for a stationary body. Indeed, by
virtue of the relationships (4.2) and (4.3), we can evaluate the various integrals in the
right-hand side of (3.13), leading to

M (2)
ω = 1

4
ω0 × (χ − R)ω0 + 1

2
Q (χω0 × Q ω0). (4.10)

It is clear that (4.9) and (4.10) vanish for both cylindrical and spherical shapes, since
χ = R = 0. For non-spherical shapes, the total vortical moment, in the case where
the fluid at infinity is in rigid rotation with an angular velocity 1

2
ω0, is given by the

sum of (4.9) and (4.10).
After discussing the solution for the case of a ‘rigid-body motion’, let us next

consider the important case of a simple shear motion, (E �= 0), where the ambient
velocity at infinity is given by (2.1)–(2.3) with tr(A) = 0. Thus, for any prescribed
linear velocity field, ω0 and E are uniquely determined in terms of the second-order
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tensor A, where, in general, E = 0(ω0). The E-dependent irrotational force FE and
torque ME exerted on a quadratic shape, can be found readily from (A 3), (A 6) and
(A 9) as

FE = −(BI + T )E (U − V) + [T, E ](U − V), ME = d × Ω, (4.11)

where d is defined in (A 10) and (A 11) in terms of the strain tensor E and the angular
Kirchhoff potential ϕi+3. The commutator operator [T, E ] is specified in (A 4) and it
can be shown that it renders a force component perpendicular to (U − V), namely
a lift force. A relation between this expression and the simplified non-uniform flow
case presented in Saffman (1992 p. 88), can also be established.

In order to demonstrate this procedure for a uniform strain, let us study for
example the case of a simple shear velocity with a single component along the x1-axis
(previously studied by Auton et al. (1988) and Legendre & Magnaudet (1998) for
spherical shapes), given by (2.1), i.e.

(V − αx2)i = V i + E x + 1
2
ω0 × r, (4.12)

where α is a parameter representing the dimensionless shear rate, and i is a unit vector
in the x1-direction. According to (2.3), ω0 = α(0, 0, 1) and the only non-vanishing
terms of the symmetric tensor E (defined in (2.2)), are E12 = E21 = − 1

2
α. It can easily

be seen then that the commutator operator [T, E ] vanishes for both cylindrical and
spherical shapes and thus the so-called inertia (irrotational) force, (4.11), is a pure
‘lift’, i.e.

(FE)cylinder = Sω0 × (U − V), (FE)ellipse = 1
2
S(1 + b/a)ω0 × (U − V),

(4.13)
(FE)sphere = 3

4
Bω0 × (U − V).

It is also clear that ME = 0 for both shapes owing to symmetry, since ϕi+3 = 0.
The total force acting on these perfectly symmetric shapes in a simple shearing

motion is given now by adding (4.13) to (4.6) or (4.7). Thus, we one readily find
that the ‘shear’ lift coefficient for a cylinder is CL = 2 (see Batchelor 1967, p. 542,
equation (7.4.15)) and the corresponding value for a sphere is CL = 3

4
(see Legendre

& Magnaudet 1998, equation (A 15)), in agreement with (4.13).
In order to obtain a more general expression for the shear lift coefficient for

non-spherical shapes, let us consider the case of a tri-axial ellipsoid,

3∑
i=1

(
xi

ai

)2

= 1 (4.14)

moving with six degrees of freedom (U, Ω) in an ambient shear flow defined in
(4.12), where, for simplicity, we choose V = 0 (see figure 2). Our aim is to evaluate
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analytically the vorticity induced force and moment components acting on the ellipsoid
in terms of its six added-masses, i.e. (T11, T22, T33) and (R11, R22, R33). Substituting again
ω0 = α(0, 0, 1) and E12 = E21 = − 1

2
α in (4.11) the latter becomes

FE = 1
2
B(ω0 × U) + 1

2
(ω0 × TU), (4.15)

which simply reduces to (4.13) if T = Sδij (cylinder) or T = 1
2
Bδij (sphere).

Combining (4.15) with (4.6) and noting that also here F (2)
ω = 0, owing to symmetry,

yields the total shear force (keeping only terms proportional to ω0),

F =

(
I +

T
B

)
(ω0 × TU). (4.16)

It implies, for example, that if U = U (1, 0, 0), then the force is again a pure lift with
a lift coefficient given by

CL =
T11

B

(
1 +

T22

B

)
, (4.17)

which readily renders CL = 2 (cylinder), CL = 1 + b/a (ellipse), and CL = 3
4

(sphere).
It is important here to emphasize again the tensorial nature of the lift coefficient for
non-perfectly symmetric shapes as compared with its scalar form for circular cylinders
and spheres presented in Auton et al. (1988).

We turn next to computing the ‘irrotational’ moment given by (4.11). For this
purpose we must evaluate the proportionality vector d by using (A 10). Recall again
that for quadratic shapes the only non-zero terms which appear in the third-order
tensor jijk defined in (A 11), are those for which i �= j �= k �= i (see Appendix A).
Thus, since in the present case E12 = E21 = − 1

2
α and ω0 = α(0, 0, 1), we find that d

is collinear with ω0 and thus

ME = 1
2
Dω0 ×Ω, D ≡ Q11(χ22 +χ33)+Q22(χ33 +χ11)+Q33(χ11 +χ22), (4.18)

which should be combined with (4.10) so as to render the expression for the total
shear moment acting on the body. Here, χ denotes the diagonal moment of inertia
tensor defined in (4.3b) and Q is related to the diagonal rotational added-mass tensor
R by (4.3a). The total moment experienced by a quadratic shape moving in the
particular ambient stream, (4.12), is given by the sum of (4.9) and (4.18), since it is
easily verified that in this case M (2)

ω = 0, i.e.

M = 1
2
Rω̇0 + 1

2
ω0 × (DI + Q)Ω − Q (χΩ0 × Q Ω). (4.19)

Finally, it is worth noting that if Ω and ω0 are parallel, the last two terms on the
right-hand side of (4.19) vanish and if, in addition, ω0 does not depend on time, then
the total moment M for a quadratic body is null. More general cases, involving for
example non-symmetric bodies, where Ω and ω0 are non-parallel or where U and V
are non-collinear, can also be treated by the same methodology.

5. Summary and conclusions
General analytic expressions are derived for the pressure force and moment acting

on a moving body of arbitrary shape in a linear shear flow with ambient uniform
vorticity. The analysis is uniformly valid both for two-dimensional as well as for three-
dimensional deformable shapes, the only exception being that in three-dimensions,



300 T. Miloh

the solution only holds initially (small time) owing to vortex stretching. First, we
consider the case where the flow at infinity is in rigid-body motion (applications
in turbo-machinery) with an angular velocity 1

2
ω0(t). The induced vorticity in the

incompressible fluid is uniform and given by ω0(t). The vortical force and moment
are expressed in terms of the ambient vorticity, the body’s six velocities and its added-
mass tensor. The vortical force is given by (3.8) + (3.12) and is represented by surface
integrals over S involving the various Kirchhoff unit potentials. A similar expression
is derived for the vortical torque, i.e. (3.11) + (3.13). It is important to note that
there is no need to determine explicitly the induced vortical velocity or impose any
weak conditions on the magnitude of ω0. By making use of the special properties of
the Kirchhoff potentials ((4.1) − (4.2)), which hold for quadratic (symmetric) shapes,
it is possible to obtain simple analytic relationships for the force, (4.6), in terms of
the rectilinear added-mass tensor T, which contain only linear terms in ω0. Since for
such shapes T is purely diagonal, the force is of a ‘lift’ nature acting in a direction
perpendicular to both the relative velocity U − V and the ambient vorticity ω0. It
readily yields the well-known solutions for a cylinder and a sphere where T can be
replaced by the two-dimensional or three-dimensional identity matrices, for which the
lift-coefficient is a scalar. However, it is demonstrated that for non-perfectly symmetric
shapes the lift coefficient is of a tensorial nature. Similar expressions can be found for
the moment in terms of the rotational added-mass tensor R and the body’s moment
of inertia tensor χ , (4.3b). It includes both linear terms in ω0, (4.9), and quadratic
terms in ω0, (4.10). If ω0 and Ω are directed along one of the major axes of the body,
then M (1)

ω is perpendicular to both ω0 and Ω and M (2)
ω = 0.

For a simple shearing motion with a linear velocity profile Ar, (2.1), the prescribed
tensor A determines uniquely both the ambient vorticity ω0 and rate of strain tensor
E ((2.2) and (2.3)). Thus, an ‘irrotational’ force component FE has to be added to
the previously found vortical force Fω. The E-dependent force FE and moment ME ,
are readily obtained from the general Galper & Miloh expressions for the force,
(A 6), and moment, (A 9). By definition, they consist of terms which are linear in the
ambient vorticity ω0 and for quadratic shapes they are simply given by (4.11).

Next, we considerd in some detail the case of uni-directional shear velocity, (4.12),
and obtained the corresponding expressions for the total vortical force, (4.16), and
moment, (4.18), exerted on the body. Note that if T is not a unity matrix and if
U has at least two components along the major axes, then F is not a genuine lift
force. The newly simplified expression for the lift coefficient, (4.17), found in this case,
readily yields the corresponding known values for a cylinder (CL = 2) and a sphere
(CL = 3

4
) and also shows the connection between the two. Even for such a simple

uni-directional shear flow, the lift coefficient depends on products of the longitudinal
and transverse added-masses. The unified methodology presented here also enables
us to consider in a straightforward manner more complicated cases of body–fluid
interactions.

Some claims made in several previous works (e.g. Rife et al. 1997; Magnaudet &
Eames 2000, § 3), suggest that CL (in the large time limit) is equal to the longitudinal
added-mass even for non-spherical axisymmetric shapes. This assertion remains to be
proved. Of course, the present study does not allow us to draw any conclusion about
the validity of this conjecture for three-dimensional flows; however, such a statement
is false in two-dimensions.

The author acknowledges useful discussions held with Dr A. Galper. This work
was supported by a grant from the Israeli Science Foundation (ISF), no. 287/00-1.
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Appendix A. The irrotational term F0 and M0

We present here the relevant main results of Galper & Miloh (1994 (hereinafter
referred to as GM), 1995) for the pressure-induced force and moment components
acting on a general body moving unsteadily with six degrees of freedom in a linear
(weakly non-uniform) velocity field of an irrotational flow. The ambient stream is
taken to be of the form V + Er, where E represents a symmetric second-order tensor
with zero trace (cf. (2.1)), such that the ambient velocity is solenoid and curl free. It
is convenient to express the hydrodynamic loads exerted on the body in terms of the
common 6 × 6 symmetric added-mass tensor Bαβ defined as,

Bαβ = Bβα ≡
∣∣∣∣T Z

Z T R

∣∣∣∣ = −
∫

S

ϕα

∂ϕβ

∂n
dS (α, β = 1, 2, . . . , 6), (A 1)

where ϕα are the six Kirchhoff unit potentials (see (2.11)).
Let us first consider, for reasons of simplicity, rigid non-rotating (Ω = 0) symmetric

(under sign inversion) quadratic shapes for which Z = Z T = 0. The force is then simply
given by (GM, (3.34)),

F0 = (BI + T)
DV

Dt
− T

dU

dt
+ [T, E ](U − V), (A 2)

which can be also compared with Saffman (1992, p. 89). Here, I is the unitary
(Kronecker) second-rank matrix. The Lagrangian time derivative is given by

DV

Dt
≡ dV

dt
+ E(V − U) (A 3)

and

[T, E ] ≡ TE − ET (A 4)

represents the commutator operator between two-second (symmetric in this case)
tensors. The equivalent index form of (A 4) when acting on a vector V, is

[T, E ]V ≡ TijEjkVk − EijTjkVk, (A 5)

which acts along a direction perpendicular to V (i.e. ‘lift’ force). It is important to
note that (A 5) vanishes for any purely diagonal matrix where Tij = cδij . Thus, for
a spherical shape, where c = 1

2
B , the last term in (A 2) is null and equation (1.7) of

Auton et al. (1988) is thus recovered. Clearly, for non-spherical shapes, the angular
body velocity Ω should also be taken into consideration and the force expression
(A 2) for this case should be augmented according to GM as follows:

F0 = (BI + T )
DV

Dt
− T

(
dU

dt
+ Ω × U

)
− Ω × T(U − V)

+ TΩ × (U − V) + [T, E ](U − V). (A 6)

For such ‘quadratic’ symmetric shapes, the force does not contain any interaction
terms between the angular velocity Ω and the ambient strain tensor E.

Finally, we also give below the additional term that appears in the force equation
for arbitrary (non-symmetric) shapes, where the off-diagonal (3×3) tensors Z and Z T

are generally non-zero. It is convenient in this case to define first a new third-order
tensor depending on the rectilinear Kirchhoff potentials ϕi and the body geometry,
i.e.

sijk ≡
∫

S

ϕi(xjnk + xknj ) dS = sikj . (A 7)
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Thus, (A 6) must be augmented by the following term expressed in index form (see
GM)

(Fi)add = −Zij

dΩj

dt
− εijkΩjZklΩl − EijZjkΩk − 1

2
εijkΩjsklmElm

− 1
2
sijk

∂Ejk

∂t
+ 1

2
sijk(εlkmEjl − εjlmElk)Ωm, (A 8)

where εijk is the common permutation tensor (i.e. (A × B)i = εijkAjBk).
These additional terms represent the more complicated mode of interaction between

the ambient strain tensor E and the angular velocity Ω which generally arise for a
non-symmetric body. The most general unsteady case is given by (3.24)–(3.27) of GM.

What remains now is to provide the corresponding expression for the hydrodynamic
torque. For the sake of brevity we reproduce here only the expression for the torque
acting on a general ‘quadratic’ (symmetric) three-dimensional shape. By referring to
(5.3) of GM, we obtain,

M0 = −R
dΩ

dt
− Ω × RΩ − (U − V) × T(U − V) + d × Ω, (A 9)

where the vector d is defined as (see GM (4.37))

di ≡ jjkiEjk − jjjkEki + 1
2
jijkEjk. (A 10)

The newly introduced tensor j can be also expressed in terms of the angular Kirchhoff
potentials ϕi+3, in an analogous manner to s (A 7), as

jijk ≡
∫

S

ϕi+3(xjnk + xknj ) dS = jikj . (A 11)

For further generalizations of the expressions for the hydrodynamic moment in the
case of a non-symmetric body (i.e. Z �= 0) as well as for the case of a deformable
time-dependent shape, see GM § 4(c).

Appendix B. Evaluating the first integral in the left-hand side of (3.5)
Using (3.1)–(3.3) in (3.5), the contributions of the singular pressure terms to the

total force are found from the following integral:∫
B+

∇p
(1)
ωS · ∇ϕi dB =

∫
B+

[
1
2
ω̇0j ∇ϕj+3 − 1

2
∇(ω0 × r · ∇Φ) − ω0 × ∇Φ

+ 1
2
ω0j ∇(∇ϕj+3 · (∇Φ + vr ))

]
· ∇ϕi dB

= 1
2
ω̇0jZij +

∫
S

(ω0 × ∇Φ · n)ϕi dS

+ 1
2

∫
S

[ω0 × r · ∇Φ − ω0j ∇ϕj+3 · (∇Φ + vr )]ni dS. (B 1)

In deriving (B 1), we have employed the Gauss theorem relating volume and surface
integrals, by realizing that the integral over the surface S∞ of infinite radius bounding
B+ is null owing to the proper decay of the various terms far from the body. In
addition, we have used in (B 1) the definition of the mixed added-mass tensor Z
defined in (A 1).

The last integral in the right-hand side of (B 1) can be further reduced by using the
following theorems involving any pair (φ, ψ) of harmonic functions (see Landweber
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& Miloh 1980, equation (28));∫
S

(∇φ · ∇ψ)n dS =

∫
S

(
∇φ

∂ψ

∂n
+ ∇ψ

∂φ

∂n

)
dS, (B 2)

and ∫
S

(ω0 × r · ∇Φ)n dS =

∫
S

(ω0 × r · n)∇Φ dS − ω0 ×
∫

S

Φn dS. (B 3)

Noting first that ω0j ∇ϕj+3 · n |S = ω0 · r × n and (∇Φ + vr ) · n |S = 0, by virtue of
(2.8)–(2.12), it is also recalled that

∫
S
vr (ω0 · r × n) dS = 0 as a direct consequence of

the Gauss theorem where vr is given in (3.2). Using (B 2) and (B 3), the last integral
in (B 1) is simply reduced to − 1

2
ω0 ×

∫
S
Φn dS and thus we obtain,

∫
B+

∇p
(1)
ωS · ∇ϕi dB = 1

2
ω̇0jZij +

∫
S

(ω0 × ∇Φ · n)ϕi dS − 1
2

(
ω0 ×

∫
S

Φn dS

)
i

(B 4)

which together with (3.6) finally leads to (3.8) for the vortical force.

Appendix C. Evaluating the first integral in the left-hand side of (3.9)
Let us evaluate the following integral in a similar manner to (B 1), i.e.∫
B+

∇p
(1)
ωS · ∇ϕi+3 dB = 1

2
ω̇0jRij +

∫
S

(ω0 × ∇Φ · n)ϕi+3 dS

+ 1
2

∫
S

[
ω0 × r · ∇Φ − ω0j ∇ϕj+3 · (∇Φ + vr )

]
(r × n)i dS. (C 1)

The second integral in the right-hand side (C 1) can be further simplified by using
the following two identities which hold for any pair (φ, ψ) of harmonic functions (see
Landweber & Miloh (1980), equation (38));∫

S

(∇φ · ∇ψ)(r × n) dS =

∫
S

[
(r × ∇φ)

∂ψ

∂n
+ (r × ∇ψ)

∂φ

∂n

]
dS (C 2)

and∫
S

(ω0 × r · ∇Φ)(r × n) dS =

∫
S

(ω0 × r · n)(r × ∇Φ) dS − ω0 ×
∫

S

Φr × n dS. (C 3)

Again, by noting that (∇Φ + vr ) · n |S = 0, the substitution of (C 2)–(C 3) into (C 1)
gives∫

B+

∇p
(1)
ωS · ∇ϕi+3 dB = 1

2
ω̇0jRij +

∫
S

(ω0 × ∇Φ · n)ϕi+3 dS

− 1
2

(
ω0 ×

∫
S

Φr × n dS

)
i

− 1
2

∫
S

(r × vr )i(ω0 · r × n) dS. (C 4)

The last integral in the right-hand side of (C 4) is regular within the body and thus
can also be written by using (3.2) and the Gauss theorem as,

− 1
2

∫
B−

(ω0 × r · ∇)(r × vr )i dB. (C 5)
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Appendix D. Solution for a two-dimensional elliptic cylinder
We present here an independent solution for the case of an ellipse with semi-axes a

and b moving with velocity U in an ambient uniform current V and constant vorticity
field ω0. Both U and V are directed along the major axis x1 and let us also assume
for simplicity that Ω = E = 0. The corresponding streamfunction is then given by
(see (3.18) for notation)

Ψ (x1, x2) = − 1
2
ω0

[
ψ4(x1, x2) − 1

2

(
x2

1 + x2
2

)]
+(U −V )[ψ1(x1, x2)−x2]+const. (D 1)

In order to determine the various streamfunctions, it is convenient to use orthogonal
elliptic coordinates (ζ, η) defined by,

x1 + ix2 = (a2 − b2)1/2 cosh(ζ + iη). (D 2)

Thus, the fundamental ellipse is given by ζ = ζ0 = const, where ζ0 = tanh−1(b/a).
Following Lamb (1932, pp. 83–89), we can express (D 1) in elliptic coordinates as

Ψ (ζ, η) = −(a2 − b2)1/2(U − V )

[
sinh ζ − b

a − b
e−ζ

]
sin η

− 1
8
ω0

[
(a2 − b2)(cosh 2ζ + cos 2η) − (a + b)2e−2ζ cos 2η

]
. (D 3)

It can be shown then that on the ellipse Ψ (ζ0, η) = −abω0 = const. The two metric
coefficients of the conformal transformation (x1, x2) → (ζ, η), evaluated at ζ = ζ0, are

h2
ζ = h2

η = a2 sin2 η + b2 cos2 η. (D 4)

Equation (D3) yields

∂Ψ

∂ζ

∣∣∣∣
ζ=ζ0

= −(a2 − b2)1/2(U − V )

[
cosh ζ0 +

b

a − b
e−ζ0

]
sin η

− 1
4
ω0

[
(a2 − b2) sinh 2ζ0 + (a + b)2e−2ζ0 cos 2η)

]
(D 5)

and thus, the tangential velocity on the ellipse is given by

qt =
1

hζ

∂Ψ

∂ζ

∣∣∣∣
ζ=ζ0

= − 1

hζ

{
(U −V )(a+b) sin η+ 1

2
ω0

[
ab+ 1

2
(a2 −b2) cos 2η

]}
. (D 6)

The hydrodynamic force acting on the ellipse according to (3.19) is then

F = 1
2

∫ 2π

0

q2
t

(
1

hζ

∂x1

∂ζ
,

1

hζ

∂x2

∂ζ

)
hη dη. (D 7)

Substituting (D 6), we find that the only surviving term is a ‘lift’ component

F2 = 1
2
a(a + b)(U − V )ω0

∫ 2π

0

ab + 1
2
(a2 − b2) cos 2η

a2 sin2 η + b2 cos2 η
sin2 η dη

= 1
2
πb(a + b)(U − V )ω0. (D 8)

The corresponding moment according to (3.19b) is null as expected, owing to
symmetry.
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